Supervised Fine-Tuning
Train models on specific tasks using labeled examples
Fine-tuning allows you to adapt pre-trained language models to specific tasks, domains, or requirements. This guide explores the most effective techniques for fine-tuning LLMs, with a focus on parameter-efficient methods.
Supervised Fine-Tuning
Train models on specific tasks using labeled examples
LoRA
Parameter-efficient approach using low-rank adaptation
QLoRA
Quantized approach for even greater memory efficiency
Evaluation
Methods to assess fine-tuned model performance
Supervised Fine-Tuning (SFT) adapts pre-trained language models to better understand and respond to specific use cases. It’s particularly useful when:
from transformers import AutoModelForCausalLM, AutoTokenizer, TrainingArgumentsfrom trl import SFTTrainer
# Load pre-trained model and tokenizermodel = AutoModelForCausalLM.from_pretrained("mistralai/Mistral-7B-v0.1")tokenizer = AutoTokenizer.from_pretrained("mistralai/Mistral-7B-v0.1")
# Set up training argumentstraining_args = TrainingArguments( output_dir="./results", num_train_epochs=3, per_device_train_batch_size=4, gradient_accumulation_steps=4, learning_rate=2e-5, weight_decay=0.01,)
# Set up SFT trainertrainer = SFTTrainer( model=model, tokenizer=tokenizer, args=training_args, train_dataset=your_dataset, dataset_text_field="text")
# Train modeltrainer.train()LoRA is a parameter-efficient fine-tuning technique that dramatically reduces memory requirements by only training a small number of parameters.
| Parameter | Description | Typical Value |
|---|---|---|
r (rank) | Dimension of low-rank matrices | 4-32 |
lora_alpha | Scaling factor | 2 × rank |
lora_dropout | Dropout probability | 0.05-0.1 |
target_modules | Which model modules to apply LoRA to | ”q_proj,v_proj” |
from peft import LoraConfig, get_peft_model
# Define LoRA configurationlora_config = LoraConfig( r=8, lora_alpha=16, lora_dropout=0.05, bias="none", task_type="CAUSAL_LM", target_modules=["q_proj", "v_proj"])
# Apply LoRA to modelpeft_model = get_peft_model(model, lora_config)
# Now train as normal with far fewer parameterstrainer = SFTTrainer( model=peft_model, tokenizer=tokenizer, args=training_args, train_dataset=your_dataset)Visual Representation of LoRA
LoRA injects trainable rank decomposition matrices into transformer layers, allowing for efficient updates to model weights without changing the full parameter set.
QLoRA builds upon LoRA by adding quantization to further reduce memory requirements. It enables fine-tuning of models that would otherwise be too large for consumer hardware.
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
# Configure quantizationquantization_config = BitsAndBytesConfig( load_in_4bit=True, bnb_4bit_quant_type="nf4", bnb_4bit_compute_dtype=torch.bfloat16, bnb_4bit_use_double_quant=True)
# Load model with quantizationmodel = AutoModelForCausalLM.from_pretrained( "mistralai/Mistral-7B-v0.1", quantization_config=quantization_config, device_map="auto")
# Apply LoRA as beforepeft_model = get_peft_model(model, lora_config)Beyond LoRA and QLoRA, several other parameter-efficient fine-tuning methods exist:
Adds trainable continuous prefixes to each transformer layer while keeping original weights frozen.
Inserts trainable prompt embeddings into the input sequence.
Adds small neural network modules between layers of the pre-trained model.
Scales activation outputs with trainable vectors for each weight matrix.
Proper evaluation is critical for assessing fine-tuned model performance. Use a combination of automated metrics and human evaluation:
Standard Benchmarks
MMLU, TruthfulQA, BBH, GSM8K for general capabilities
Domain-Specific Tests
Custom benchmarks for your specific use case
Automated Evaluation
LLM-as-Judge and Alpaca Eval for scalable assessment
Human Evaluation
Expert review and A/B testing with end users
Fine-tuning LLMs has become increasingly accessible through parameter-efficient methods like LoRA and QLoRA. These approaches allow you to:
By combining these techniques with proper evaluation, you can create custom AI solutions that are both powerful and resource-efficient.