Knowledge Retrieval
We implement robust RAG systems that retrieve relevant, authoritative information before generating responses.
Hallucinations - instances where AI models generate incorrect information with high confidence - represent a significant challenge for AI agent development. At VrealSoft, we’ve implemented several strategies to minimize this issue.
Knowledge Retrieval
We implement robust RAG systems that retrieve relevant, authoritative information before generating responses.
Source Attribution
Our agents are designed to cite sources and clearly indicate when information is derived vs. inferred.
# Example of a verification system for fact-checkingdef verify_response(self, response, query): # Extract factual claims claims = self.claim_extractor(response)
# Check each claim against trusted sources verification_results = [] for claim in claims: evidence = self.evidence_retriever.search(claim) confidence = self.claim_validator(claim, evidence) verification_results.append((claim, confidence))
# Revise response if necessary if any(conf < self.confidence_threshold for _, conf in verification_results): return self.revise_response(response, verification_results)
return responseWe’ve found that breaking down complex reasoning into explicit steps helps reduce hallucinations:
Scope Boundaries
Clearly defining what the agent should and shouldn’t attempt to answer
Confidence Thresholds
Only providing definitive answers when confidence exceeds set thresholds
agent_config = { "hallucination_controls": { "retrieval_sources": ["company_docs", "product_db", "verified_knowledge_base"], "confidence_threshold": 0.85, "uncertainty_communication": True, "fact_checking_enabled": True, "source_citation_required": True }}def generate_response(self, query): # 1. Retrieve relevant information context = self.knowledge_retriever.get_relevant_context(query)
# 2. Generate candidate response with reasoning candidate = self.llm.generate(query, context)
# 3. Verify factual accuracy verified_response = self.fact_checker.verify(candidate)
# 4. Add appropriate uncertainty markers final_response = self.uncertainty_handler.process(verified_response)
return final_responseWe track hallucination rates through:
We’re actively working on: