LLM Inference Time
Time required for model generation, especially for large models
AI agents face significant challenges related to response times and operational costs. At VrealSoft, we’ve developed comprehensive optimization strategies to address these issues.
LLM Inference Time
Time required for model generation, especially for large models
Sequential Tool Calls
Each tool adds latency when called in sequence
Context Processing
Time spent processing and organizing large context windows
Network Latency
Delays from API calls and data transfers
optimization_strategies = { "system_architecture": [ "parallel_processing", "asynchronous_workflows", "request_batching", "edge_deployment" ], "model_optimizations": [ "model_distillation", "quantization", "tiered_model_selection", "speculative_execution" ], "caching_strategies": [ "response_caching", "embedding_caching", "tool_result_caching", "precomputation" ], "content_optimization": [ "context_compression", "progressive_generation", "streaming_responses", "incremental_updates" ]}cost_strategies = { "model_usage_optimization": [ "right_sizing_models", "token_usage_optimization", "batch_processing", "prompt_engineering" ], "infrastructure": [ "reserved_capacity", "spot_instances", "auto_scaling", "multi-region_optimization" ], "caching_and_storage": [ "result_caching", "vector_database_optimization", "selective_persistence" ], "workflow_design": [ "tool_usage_optimization", "agent_collaboration", "human_in_the_loop", "hybrid_approaches" ]}# Example of parallel tool executionasync def execute_parallel_tools(agent_state, tools_to_execute): # Create tasks for all tools that can run in parallel tasks = [] for tool_call in tools_to_execute: # Check if tool can run in parallel tool_def = get_tool_definition(tool_call["name"]) if tool_def.get("parallel_safe", False): # Create task task = asyncio.create_task( execute_tool( tool_name=tool_call["name"], parameters=tool_call["parameters"], agent_state=agent_state ) ) tasks.append((tool_call, task))
# Wait for all tasks to complete results = {} for tool_call, task in tasks: try: result = await task results[tool_call["id"]] = { "status": "success", "result": result } except Exception as e: results[tool_call["id"]] = { "status": "error", "error": str(e) }
return resultsProgressive Response
Generating initial responses quickly, then refining them
Background Processing
Handling computationally intensive tasks asynchronously
Intermediate Results
Providing partial responses while work continues
# Progressive response generation systemclass ProgressiveResponseGenerator: def __init__(self, websocket_connection): self.websocket = websocket_connection self.response_id = generate_id() self.response_parts = [] self.is_complete = False
async def start_response(self, query): # Send acknowledgment immediately await self.websocket.send_json({ "type": "response_started", "response_id": self.response_id, "query": query, "timestamp": current_time() })
# Generate quick initial response initial_response = await generate_initial_response(query)
# Send initial response await self.websocket.send_json({ "type": "initial_response", "response_id": self.response_id, "content": initial_response, "is_final": False, "timestamp": current_time() })
self.response_parts.append(initial_response)
# Start background processing for complete response asyncio.create_task(self.process_full_response(query))
return self.response_id
async def process_full_response(self, query): try: # Start tool identification tools_needed = await identify_required_tools(query)
# Send tool usage update await self.websocket.send_json({ "type": "tool_execution_started", "response_id": self.response_id, "tools": [t["name"] for t in tools_needed], "timestamp": current_time() })
# Execute tools in parallel where possible tool_results = await execute_tools_optimally(tools_needed, query)
# Send update that tool execution is complete await self.websocket.send_json({ "type": "tool_execution_complete", "response_id": self.response_id, "timestamp": current_time() })
# Generate final response based on tool results final_response = await generate_final_response(query, tool_results)
# Send final response await self.websocket.send_json({ "type": "final_response", "response_id": self.response_id, "content": final_response, "is_final": True, "timestamp": current_time() })
self.response_parts.append(final_response) self.is_complete = True
except Exception as e: # Handle errors await self.websocket.send_json({ "type": "response_error", "response_id": self.response_id, "error": str(e), "timestamp": current_time() })def select_optimal_model(task): # Classify the task type task_type = classify_task(task)
# Define model selection criteria selection_criteria = { "complexity": assess_complexity(task), "creativity_required": assess_creativity_needed(task), "reasoning_depth": assess_reasoning_required(task), "factual_knowledge": assess_knowledge_required(task), "response_length": estimate_response_length(task) }
# Map task types to appropriate models model_tiers = { "simple_factual": { "primary": "small_model", "fallback": "medium_model", "threshold": { "complexity": 3, "reasoning_depth": 2 } }, "creative_generation": { "primary": "medium_model", "fallback": "large_model", "threshold": { "creativity_required": 4, "response_length": 500 } }, "complex_reasoning": { "primary": "large_model", "fallback": None, "threshold": None }, "tool_usage": { "primary": "medium_model", "fallback": "large_model", "threshold": { "complexity": 4, "reasoning_depth": 3 } } }
# Get model tier for this task type tier = model_tiers.get(task_type, model_tiers["complex_reasoning"])
# Check if we need to use fallback model based on thresholds if tier["threshold"]: for criterion, threshold in tier["threshold"].items(): if selection_criteria[criterion] > threshold: return tier["fallback"] or tier["primary"]
return tier["primary"]model_configurations = { "small_model": { "model_id": "vrealsoft-small", "max_tokens": 1024, "temperature": 0.7, "streaming": True, "cost_per_1k_tokens": 0.0005, "avg_tokens_per_second": 150, "suitable_for": [ "classification", "simple_qa", "formatting", "summarization" ] }, "medium_model": { "model_id": "vrealsoft-medium", "max_tokens": 2048, "temperature": 0.7, "streaming": True, "cost_per_1k_tokens": 0.003, "avg_tokens_per_second": 80, "suitable_for": [ "complex_qa", "basic_reasoning", "tool_selection", "creative_writing" ] }, "large_model": { "model_id": "vrealsoft-large", "max_tokens": 4096, "temperature": 0.7, "streaming": True, "cost_per_1k_tokens": 0.01, "avg_tokens_per_second": 30, "suitable_for": [ "multi_step_reasoning", "complex_planning", "nuanced_understanding", "advanced_problem_solving" ] }}Effective caching can dramatically reduce both latency and costs:
Response Caching
Storing common question/answer pairs
Embedding Caching
Preserving vector representations of frequently accessed content
Tool Result Caching
Storing results from expensive tool calls
Component Caching
Caching intermediate results in multi-step workflows
# Multi-level caching systemclass AgentCacheSystem: def __init__(self): self.response_cache = ResponseCache() self.embedding_cache = EmbeddingCache() self.tool_result_cache = ToolResultCache() self.component_cache = ComponentCache()
# Tracking and optimization self.hit_rates = { "response": [], "embedding": [], "tool_result": [], "component": [] }
async def get_cached_response(self, query, context_hash): """Try to retrieve a full response from cache""" cache_key = generate_response_cache_key(query, context_hash)
# Check cache cached = await self.response_cache.get(cache_key)
if cached: # Record hit self.hit_rates["response"].append(1) return { "cache_hit": True, "source": "response_cache", "result": cached } else: # Record miss self.hit_rates["response"].append(0) return {"cache_hit": False}
async def get_cached_tool_result(self, tool_name, params_hash): """Try to retrieve a tool execution result from cache""" cache_key = f"{tool_name}:{params_hash}"
# Check if tool results can be cached tool_def = get_tool_definition(tool_name) if not tool_def.get("cacheable", False): return {"cache_hit": False, "reason": "tool_not_cacheable"}
# Check cache with TTL consideration cached = await self.tool_result_cache.get(cache_key)
if cached: # Check if result is still valid ttl = tool_def.get("cache_ttl", 3600) # Default 1 hour if (current_time() - cached["timestamp"]) < ttl: # Record hit self.hit_rates["tool_result"].append(1) return { "cache_hit": True, "source": "tool_result_cache", "result": cached["result"] }
# Record miss self.hit_rates["tool_result"].append(0) return {"cache_hit": False}
async def store_tool_result(self, tool_name, params_hash, result): """Store a tool execution result in cache""" tool_def = get_tool_definition(tool_name) if not tool_def.get("cacheable", False): return
cache_key = f"{tool_name}:{params_hash}" await self.tool_result_cache.set(cache_key, { "result": result, "timestamp": current_time() })
def get_cache_analytics(self): """Get analytics about cache performance""" return { "hit_rates": { "response": sum(self.hit_rates["response"][-1000:]) / max(len(self.hit_rates["response"][-1000:]), 1), "embedding": sum(self.hit_rates["embedding"][-1000:]) / max(len(self.hit_rates["embedding"][-1000:]), 1), "tool_result": sum(self.hit_rates["tool_result"][-1000:]) / max(len(self.hit_rates["tool_result"][-1000:]), 1), "component": sum(self.hit_rates["component"][-1000:]) / max(len(self.hit_rates["component"][-1000:]), 1) }, "cache_sizes": { "response": self.response_cache.size(), "embedding": self.embedding_cache.size(), "tool_result": self.tool_result_cache.size(), "component": self.component_cache.size() }, "estimated_savings": self.calculate_estimated_savings() }def compress_context(context_items, max_tokens=4000): # Classify items by importance critical_items = [item for item in context_items if item["importance"] == "critical"] high_items = [item for item in context_items if item["importance"] == "high"] medium_items = [item for item in context_items if item["importance"] == "medium"] low_items = [item for item in context_items if item["importance"] == "low"]
# First pass: calculate token counts critical_tokens = sum(count_tokens(item["content"]) for item in critical_items) high_tokens = sum(count_tokens(item["content"]) for item in high_items) medium_tokens = sum(count_tokens(item["content"]) for item in medium_items) low_tokens = sum(count_tokens(item["content"]) for item in low_items)
total_tokens = critical_tokens + high_tokens + medium_tokens + low_tokens
# If we're already under limit, return all items if total_tokens <= max_tokens: return context_items
# Calculate how many tokens we need to reduce excess_tokens = total_tokens - max_tokens
# Second pass: apply compression strategies based on importance compressed_items = critical_items.copy() # Start with critical items unchanged remaining_tokens = max_tokens - critical_tokens
# Process high importance items compressed_high = compress_items(high_items, max_tokens=min(remaining_tokens, high_tokens), compression_level="light") compressed_items.extend(compressed_high) remaining_tokens -= sum(count_tokens(item["content"]) for item in compressed_high)
# Process medium importance items if space remains if remaining_tokens > 0: compressed_medium = compress_items(medium_items, max_tokens=min(remaining_tokens, medium_tokens), compression_level="medium") compressed_items.extend(compressed_medium) remaining_tokens -= sum(count_tokens(item["content"]) for item in compressed_medium)
# Process low importance items if space remains if remaining_tokens > 0: compressed_low = compress_items(low_items, max_tokens=min(remaining_tokens, low_tokens), compression_level="high") compressed_items.extend(compressed_low)
return compressed_itemsdef compress_items(items, max_tokens, compression_level): """Compress a list of items to fit within max_tokens""" if not items: return []
# Sort by compression priority (reverse to keep most important first) sorted_items = sorted(items, key=lambda x: x.get("compression_priority", 0), reverse=True)
compressed_items = [] used_tokens = 0
for item in sorted_items: original_tokens = count_tokens(item["content"])
# Apply compression based on level if compression_level == "light": # Light compression (target ~80% of original) compressed_content = apply_light_compression(item["content"]) elif compression_level == "medium": # Medium compression (target ~50% of original) compressed_content = apply_medium_compression(item["content"]) else: # High compression (target ~30% of original or summary) compressed_content = apply_high_compression(item["content"])
compressed_tokens = count_tokens(compressed_content)
# If adding this item would exceed our budget, skip it if used_tokens + compressed_tokens > max_tokens: # If this is the first item and we can't fit it even with high compression, # try maximum compression (just core points) if len(compressed_items) == 0: ultra_compressed = extract_core_points(item["content"]) ultra_tokens = count_tokens(ultra_compressed)
if used_tokens + ultra_tokens <= max_tokens: item_copy = item.copy() item_copy["content"] = ultra_compressed item_copy["compression_applied"] = "ultra" compressed_items.append(item_copy) used_tokens += ultra_tokens
continue
# Add the compressed item item_copy = item.copy() item_copy["content"] = compressed_content item_copy["compression_applied"] = compression_level compressed_items.append(item_copy) used_tokens += compressed_tokens
# If we've used our token budget, stop if used_tokens >= max_tokens: break
return compressed_itemsEdge Deployment
Deploying models closer to users to reduce network latency
Auto-scaling
Dynamically adjusting resources based on demand
Reserved Instances
Using committed resources for baseline capacity needs
Spot Instances
Leveraging lower-cost resources for non-critical tasks
# Infrastructure management systeminfrastructure_strategy = { "model_deployment": { "small_model": { "deployment_type": "global_edge", "regions": ["us-east", "us-west", "eu-central", "ap-southeast"], "instance_type": "gpu-small", "scaling_policy": { "min_instances": 2, "max_instances": 20, "scale_up_threshold": 70, # CPU utilization % "scale_down_threshold": 30 } }, "medium_model": { "deployment_type": "regional", "regions": ["us-east", "eu-central", "ap-southeast"], "instance_type": "gpu-medium", "scaling_policy": { "min_instances": 1, "max_instances": 10, "scale_up_threshold": 60, "scale_down_threshold": 20 } }, "large_model": { "deployment_type": "centralized", "regions": ["us-east"], "instance_type": "gpu-large", "scaling_policy": { "min_instances": 1, "max_instances": 5, "scale_up_threshold": 50, "scale_down_threshold": 15 } } }, "instance_strategy": { "baseline": { "type": "reserved_instances", "term": "1-year", "payment": "partial_upfront" }, "variable": { "type": "on_demand" }, "batch_processing": { "type": "spot_instances" } }, "routing_strategy": { "primary": "latency_based", "fallback": "round_robin" }}class PerformanceMonitor: def __init__(self): self.metrics = { "response_times": [], "token_usage": [], "cache_hits": [], "model_usage": {}, "cost_per_request": [] }
def record_request(self, request_data): # Record basic metrics self.metrics["response_times"].append(request_data["response_time"]) self.metrics["token_usage"].append(request_data["token_usage"]) self.metrics["cache_hits"].append(request_data["cache_hit_rate"]) self.metrics["cost_per_request"].append(request_data["cost"])
# Track model usage model = request_data["model"] if model not in self.metrics["model_usage"]: self.metrics["model_usage"][model] = 0 self.metrics["model_usage"][model] += 1
def get_summary(self, time_period="day"): # Get data for the specified time period data = self.filter_by_time_period(time_period)
# Calculate summary statistics summary = { "response_time": { "mean": mean(data["response_times"]), "p50": percentile(data["response_times"], 50), "p95": percentile(data["response_times"], 95), "p99": percentile(data["response_times"], 99) }, "token_usage": { "mean": mean(data["token_usage"]), "total": sum(data["token_usage"]) }, "cache_hit_rate": mean(data["cache_hits"]), "model_distribution": { model: count / len(data["response_times"]) for model, count in data["model_usage"].items() }, "cost": { "mean": mean(data["cost_per_request"]), "total": sum(data["cost_per_request"]) } }
# Generate optimization suggestions summary["optimization_suggestions"] = self.generate_suggestions(summary)
return summary
def generate_suggestions(self, summary): suggestions = []
# Check for low cache hit rate if summary["cache_hit_rate"] < 0.3: suggestions.append({ "area": "caching", "suggestion": "Improve cache hit rate by analyzing common queries", "potential_impact": "medium" })
# Check response time if summary["response_time"]["p95"] > 2000: # 2 seconds suggestions.append({ "area": "latency", "suggestion": "High p95 response times indicate optimization needed", "potential_impact": "high" })
# Check model distribution large_model_usage = summary["model_distribution"].get("large_model", 0) if large_model_usage > 0.4: # Using large model for >40% of requests suggestions.append({ "area": "model_selection", "suggestion": "High usage of large model. Consider optimizing model selection.", "potential_impact": "high" })
return suggestionsclass CostOptimizer: def __init__(self, performance_monitor): self.monitor = performance_monitor self.current_strategies = load_current_strategies() self.optimization_history = []
def analyze_costs(self): # Get recent performance data performance_data = self.monitor.get_summary("week")
# Identify cost drivers cost_drivers = self.identify_cost_drivers(performance_data)
# Generate optimization strategies strategies = self.generate_optimization_strategies(cost_drivers, performance_data)
return { "cost_drivers": cost_drivers, "current_monthly_cost": self.estimate_monthly_cost(performance_data), "optimization_strategies": strategies }
def identify_cost_drivers(self, performance_data): drivers = []
# Analyze model usage costs model_costs = {} for model, usage_rate in performance_data["model_distribution"].items(): requests_per_day = len(performance_data["response_times"]) * usage_rate avg_tokens = performance_data["token_usage"]["mean"] model_config = model_configurations[model]
daily_cost = requests_per_day * avg_tokens / 1000 * model_config["cost_per_1k_tokens"] model_costs[model] = daily_cost
# Sort by cost impact sorted_models = sorted(model_costs.items(), key=lambda x: x[1], reverse=True)
for model, cost in sorted_models: drivers.append({ "type": "model_usage", "model": model, "daily_cost": cost, "percentage": cost / sum(model_costs.values()) * 100 })
# Check cache effectiveness cache_miss_cost = self.estimate_cache_miss_cost(performance_data) if cache_miss_cost > 0.1 * sum(model_costs.values()): # If >10% of model costs drivers.append({ "type": "cache_misses", "daily_cost": cache_miss_cost, "percentage": cache_miss_cost / sum(model_costs.values()) * 100 })
return drivers
def generate_optimization_strategies(self, cost_drivers, performance_data): strategies = []
# Check for model downsizing opportunities large_model_usage = next((d for d in cost_drivers if d["type"] == "model_usage" and d["model"] == "large_model"), None) if large_model_usage and large_model_usage["percentage"] > 30: strategies.append({ "type": "model_downsizing", "description": "Optimize large model usage with better routing logic", "estimated_savings": large_model_usage["daily_cost"] * 0.3 * 30, # 30% reduction over 30 days "implementation_complexity": "medium" })
# Check for caching improvements if performance_data["cache_hit_rate"] < 0.5: # Less than 50% cache hits potential_savings = self.estimate_cache_improvement_savings(performance_data) strategies.append({ "type": "cache_optimization", "description": "Improve caching strategy for common queries", "estimated_savings": potential_savings, "implementation_complexity": "low" })
# Check for batching opportunities if self.can_benefit_from_batching(performance_data): batch_savings = self.estimate_batching_savings(performance_data) strategies.append({ "type": "request_batching", "description": "Implement request batching for similar concurrent queries", "estimated_savings": batch_savings, "implementation_complexity": "medium" })
return strategiesWe continue to explore: