Chain-of-Thought
Explicitly prompting the agent to show step-by-step reasoning
AI agents often struggle with complex reasoning tasks and effective planning. At VrealSoft, we’ve developed several approaches to enhance these capabilities.
def hierarchical_planning(self, task): # Generate high-level plan high_level_plan = self.planner.generate_high_level_plan(task) # Decompose into subtasks with dependencies subtasks = self.planner.decompose_into_subtasks(high_level_plan) # Create execution graph execution_graph = self.create_execution_graph(subtasks) # Execute according to dependency order results = self.execute_graph(execution_graph) return self.synthesize_results(results)def iterative_planning(self, task): # Initial rough plan plan = self.planner.create_initial_plan(task) # Iteratively refine the plan for _ in range(self.max_refinement_steps): feedback = self.evaluate_plan(plan) if feedback.quality_score > self.quality_threshold: break plan = self.refine_plan(plan, feedback) return planChain-of-Thought
Explicitly prompting the agent to show step-by-step reasoning
Tree of Thoughts
Exploring multiple reasoning paths and selecting the most promising one
ReAct Framework
Interleaving reasoning and action steps to improve planning
One key limitation in planning is the context window constraint. Our solutions include:
# Example of structured state trackingclass PlanStateManager: def __init__(self): self.current_plan = None self.completed_steps = [] self.pending_steps = [] self.results_cache = {} self.important_context = []
def update_state(self, step_result): # Update plan state based on execution results self.completed_steps.append(step_result.step) self.results_cache[step_result.step.id] = step_result.output self.pending_steps = [s for s in self.pending_steps if s.id != step_result.step.id]
# Update important context based on results self.important_context = self.context_manager.prioritize( self.important_context + [step_result.output] )
def get_context_for_next_step(self): # Provide optimized context for the next step return { "plan": self.summarize_plan(), "completed_steps": self.summarize_completed_steps(), "next_step": self.pending_steps[0] if self.pending_steps else None, "important_context": self.important_context }Domain-Specific Knowledge
Integrating specialized knowledge bases for particular domains
Algorithmic Reasoning
Implementing specific algorithms for well-defined problem types
Our planning and reasoning enhancement architecture includes:
planning_system = { "components": { "planner": { "type": "hierarchical_planner", "refinement_steps": 3, "evaluation_metrics": ["completeness", "feasibility", "efficiency"] }, "reasoner": { "type": "tree_of_thoughts", "max_branches": 3, "evaluation_method": "self_consistency" }, "state_tracker": { "type": "structured_state_manager", "compression_enabled": True } }}def handle_complex_task(self, task): # 1. Plan generation plan = self.planner.create_plan(task)
# 2. State initialization self.state_tracker.initialize(plan)
# 3. Execution loop while not self.state_tracker.is_complete(): next_step = self.state_tracker.get_next_step() context = self.state_tracker.get_context_for_step(next_step)
# Apply reasoning to current step reasoning = self.reasoner.analyze(next_step, context)
# Execute step with reasoning result = self.executor.execute(next_step, reasoning)
# Update state self.state_tracker.update(result)
# 4. Synthesize final result return self.synthesizer.create_result(self.state_tracker.get_all_results())We measure planning and reasoning capabilities through:
We continue to explore: