Skip to content

Security and Safety Concerns

Managing Security and Safety Risks

AI agents with increasing capabilities introduce new security and safety challenges. At VrealSoft, we’ve developed a comprehensive approach to address these concerns.

Risk Categories in AI Agent Systems

Prompt Injection

Attempts to manipulate agent behavior through carefully crafted inputs

Data Exfiltration

Unauthorized access to or extraction of sensitive information

Tool Misuse

Exploitation of tool access for unintended purposes

Authorization Bypassing

Circumventing established permission models

Prompt Injection Defenses

Prompt injection attacks attempt to override or manipulate the agent’s instructions by including malicious content in user inputs.

  1. Input sanitization to detect and neutralize potential prompt injections
  2. Instruction reinforcement to strengthen adherence to core instructions
  3. Context segregation to separate user input from system instructions 4. Behavioral monitoring to detect unusual agent responses
def sanitize_user_input(user_input):
# Check for common prompt injection patterns
injection_patterns = [
r"ignore previous instructions",
r"disregard your guidelines",
r"your new instructions are",
r"you are now [a-zA-Z]+"
]
for pattern in injection_patterns:
if re.search(pattern, user_input, re.IGNORECASE):
# Flag potential injection attempt
return {
"sanitized_input": re.sub(pattern, "[FILTERED]", user_input),
"risk_level": "high",
"flagged_pattern": pattern
}
# Check for suspicious formatting attempts
formatting_patterns = [
r"```system",
r"<(?:instructions|prompt|system|assistant)>",
r"//\s*system"
]
for pattern in formatting_patterns:
if re.search(pattern, user_input, re.IGNORECASE):
return {
"sanitized_input": re.sub(pattern, "[FILTERED]", user_input),
"risk_level": "medium",
"flagged_pattern": pattern
}
# Input appears safe
return {
"sanitized_input": user_input,
"risk_level": "low",
"flagged_pattern": None
}

Permission Systems and Tool Control

Our permission architecture includes:

Granular Access Control

Fine-grained permissions for specific tools and operations

Context-aware Permissions

Adjusting access based on conversation context and user intent

Escalation Procedures

Processes for requesting and granting elevated permissions

Audit Logging

Comprehensive logging of all permission decisions

# Example permission system implementation
class AgentPermissionSystem:
def __init__(self, agent_id, permission_store):
self.agent_id = agent_id
self.permission_store = permission_store
self.current_permissions = set()
self.active_session = None
self.audit_log = []
def start_session(self, user_id, session_context):
# Initialize a new session with base permissions
self.active_session = {
"session_id": generate_session_id(),
"user_id": user_id,
"start_time": current_time(),
"context": session_context
}
# Apply base permissions for this agent and user
self.current_permissions = self.permission_store.get_base_permissions(
self.agent_id, user_id
)
# Log session start
self.log_event("session_started", {
"permissions": list(self.current_permissions)
})
return self.active_session["session_id"]
def check_permission(self, action, resource, additional_context=None):
if not self.active_session:
return {"allowed": False, "reason": "no_active_session"}
permission_key = f"{action}:{resource}"
# Direct permission check
if permission_key in self.current_permissions:
self.log_event("permission_granted", {
"action": action,
"resource": resource,
"method": "direct"
})
return {"allowed": True, "method": "direct"}
# Check for pattern-based permissions
for pattern in self.current_permissions:
if pattern.endswith("*") and permission_key.startswith(pattern[:-1]):
self.log_event("permission_granted", {
"action": action,
"resource": resource,
"method": "pattern",
"pattern": pattern
})
return {"allowed": True, "method": "pattern", "pattern": pattern}
# Permission denied
self.log_event("permission_denied", {
"action": action,
"resource": resource
})
return {"allowed": False, "reason": "not_permitted"}
def request_elevated_permission(self, action, resource, justification):
# Request temporary elevation of permissions
request_id = generate_request_id()
self.log_event("elevation_requested", {
"request_id": request_id,
"action": action,
"resource": resource,
"justification": justification
})
# In a real system, this might trigger an approval workflow
# For this example, we'll simulate an automatic approval for certain cases
auto_approved = self.permission_store.can_auto_approve(
self.agent_id,
self.active_session["user_id"],
action,
resource,
justification
)
if auto_approved:
# Grant temporary permission
temp_permission = f"{action}:{resource}"
self.current_permissions.add(temp_permission)
self.log_event("elevation_approved", {
"request_id": request_id,
"action": action,
"resource": resource,
"approval_method": "automatic",
"expiration": current_time() + 3600 # 1 hour expiration
})
# Schedule permission removal
schedule_permission_removal(self, temp_permission, 3600)
return {"approved": True, "method": "automatic", "expiration": 3600}
else:
# Would typically wait for human approval here
return {"approved": False, "method": "requires_human_approval", "request_id": request_id}
def log_event(self, event_type, details):
log_entry = {
"timestamp": current_time(),
"agent_id": self.agent_id,
"session_id": self.active_session["session_id"] if self.active_session else None,
"user_id": self.active_session["user_id"] if self.active_session else None,
"event_type": event_type,
"details": details
}
self.audit_log.append(log_entry)
self.permission_store.store_audit_log(log_entry)

Sandbox Environments for Tool Execution

Our sandboxing approach includes:

  1. Process isolation to prevent access to the host system 2. Resource limitations on CPU, memory, and network usage 3. File system restrictions to control data access 4. Execution timeouts to prevent denial-of-service attacks
sandbox_config = {
"isolation": {
"process": True, # Run in separate process
"network": True, # Network namespace isolation
"filesystem": True # File system isolation
},
"resources": {
"memory_limit_mb": 256,
"cpu_limit_percent": 50,
"disk_quota_mb": 100,
"network_rate_limit_kbps": 1024
},
"timeouts": {
"execution_timeout_sec": 30,
"idle_timeout_sec": 300
},
"filesystem": {
"read_only_paths": ["/lib", "/usr/lib", "/etc/ssl"],
"writable_paths": ["/tmp/sandbox"],
"hidden_paths": ["/etc/passwd", "/etc/shadow", "/.env"]
},
"network": {
"allowed_domains": ["api.company.com", "data.company.com"],
"allowed_ports": [443, 8443],
"blocked_domains": ["malicious.example.com"]
}
}

Monitoring and Anomaly Detection

Continuous monitoring is essential for detecting potential security issues:

Behavioral Baselines

Establishing normal patterns of agent behavior

Real-time Monitoring

Watching for anomalous actions or responses

Intervention Mechanisms

Systems for interrupting problematic behavior

Incident Response

Procedures for addressing detected security events

# Simplified monitoring system
class AgentMonitor:
def __init__(self, agent_id):
self.agent_id = agent_id
self.behavior_profiles = load_behavior_profiles(agent_id)
self.current_session = None
self.session_events = []
self.anomaly_thresholds = load_thresholds(agent_id)
def start_session(self, user_id, session_context):
self.current_session = {
"session_id": generate_session_id(),
"user_id": user_id,
"start_time": current_time(),
"context": session_context
}
self.session_events = []
return self.current_session["session_id"]
def record_event(self, event_type, event_data):
event = {
"timestamp": current_time(),
"type": event_type,
"data": event_data
}
self.session_events.append(event)
# Check for anomalies
anomalies = self.detect_anomalies(event)
if anomalies:
self.handle_anomalies(event, anomalies)
return event
def detect_anomalies(self, event):
anomalies = []
# Check against different anomaly detectors
for detector_name, detector in self.get_detectors(event["type"]).items():
result = detector.check(event, self.session_events, self.behavior_profiles)
if result["is_anomaly"]:
anomalies.append({
"detector": detector_name,
"score": result["score"],
"reason": result["reason"],
"severity": result["severity"]
})
return anomalies
def handle_anomalies(self, event, anomalies):
# Log all anomalies
for anomaly in anomalies:
log_security_event({
"event_type": "anomaly_detected",
"agent_id": self.agent_id,
"session_id": self.current_session["session_id"],
"detector": anomaly["detector"],
"severity": anomaly["severity"],
"reason": anomaly["reason"],
"event": event
})
# Take action based on severity
if anomaly["severity"] == "critical":
# Terminate session immediately
self.terminate_session("critical_anomaly_detected")
# Alert security team
alert_security_team({
"agent_id": self.agent_id,
"session_id": self.current_session["session_id"],
"anomaly": anomaly,
"event": event
})
elif anomaly["severity"] == "high":
# Apply restrictions to the session
apply_session_restrictions(self.current_session["session_id"], {
"reason": "high_severity_anomaly",
"restrictions": ["limit_sensitive_tools", "increase_monitoring"]
})
def terminate_session(self, reason):
self.current_session["end_time"] = current_time()
self.current_session["end_reason"] = reason
# Store session data for analysis
store_session_data(self.current_session, self.session_events)
# Clear current session
self.current_session = None
self.session_events = []

Data Privacy and Protection

  1. Data minimization to reduce exposure of sensitive information 2. Personal data detection to identify and protect PII/PHI 3. Secure handling of sensitive data during processing 4. Retention policies to minimize unnecessary data storage

Future Security Research

We continue to explore:

  • Advanced jailbreak detection techniques
  • Multi-agent security protocols
  • Enhanced behavioral monitoring systems
  • Formal verification of safety properties
  • Adversarial testing methodologies to discover new vulnerabilities