Skip to content

Tool Use Inefficiencies

Enhancing Tool Use Capabilities

AI agents often struggle with effectively using tools at their disposal. At VrealSoft, we’ve developed comprehensive approaches to improve tool usage.

Clear Tool Definition

# Example of a well-structured tool definition
tools = [
{
"name": "search_database",
"description": "Search the customer database for matching records",
"parameters": {
"query": {
"type": "string",
"description": "The search term to look for"
},
"limit": {
"type": "integer",
"description": "Maximum number of results to return",
"default": 5
}
},
"returns": {
"type": "array",
"items": {
"type": "object",
"properties": {
"id": "string",
"name": "string",
"details": "object"
}
}
},
"examples": [
{
"input": {"query": "customer_id:12345", "limit": 1},
"output": [{"id": "12345", "name": "John Smith", "details": {...}}]
}
]
}
]

Tool Selection Training

Few-Shot Examples

Providing clear examples of when and how to use each tool

Tool Taxonomies

Organizing tools into categories to aid in selection

Decision Trees

Explicit guidance on which situations warrant specific tools

Parameter Formulation Improvements

Agents often struggle with correctly formatting parameters for tools. Our approaches include:

  1. Schema validation to verify parameter formats before execution 2. Repair mechanisms to fix minor formatting issues automatically 3. Interactive correction for guiding the agent to fix parameter problems 4. Progressive disclosure of advanced parameters as needed
def validate_and_repair_parameters(tool_call):
tool_name = tool_call["name"]
params = tool_call["parameters"]
# Get tool definition
tool_def = get_tool_definition(tool_name)
# Validate required parameters
for param_name, param_def in tool_def["parameters"].items():
if param_def.get("required", False) and param_name not in params:
return {
"valid": False,
"error": f"Missing required parameter: {param_name}",
"suggestion": f"Add the {param_name} parameter, which should be a {param_def['type']}"
}
# Type checking and repairs
for param_name, param_value in params.items():
if param_name in tool_def["parameters"]:
param_def = tool_def["parameters"][param_name]
# Type validation
if not validate_type(param_value, param_def["type"]):
# Try to repair
repaired_value = attempt_repair(param_value, param_def["type"])
if repaired_value:
params[param_name] = repaired_value
else:
return {
"valid": False,
"error": f"Parameter {param_name} has incorrect type",
"suggestion": f"Expected {param_def['type']}, got {type(param_value).__name__}"
}
return {"valid": True, "parameters": params}

Result Interpretation Training

Our approach includes:

  • Structured outputs with clear metadata about result meaning
  • Interpretation examples showing how to use different result types
  • Context retention to help agents maintain awareness of previous results
  • Result summarization for large or complex tool outputs
# Example of structured tool result
def format_tool_result(raw_result, tool_name):
# Create a structured result with metadata
formatted_result = {
"tool_name": tool_name,
"timestamp": datetime.now().isoformat(),
"status": "success" if raw_result else "no_results",
"result_type": determine_result_type(raw_result),
"result_summary": summarize_result(raw_result),
"result": raw_result,
"usage_guidance": get_usage_guidance(tool_name, raw_result)
}
return formatted_result

Execution Management

Tool Chains

Predefined sequences of tools for common tasks

Reflective Execution

Having agents evaluate the effectiveness of tool use

Iterative Refinement

Progressively improving tool calls based on results

Training and Evaluation System

We’ve developed a comprehensive training and evaluation system for tool use:

tool_use_training = {
"methods": [
{
"name": "demonstration_learning",
"description": "Providing examples of correct tool usage",
"examples_per_tool": 5
},
{
"name": "error_correction",
"description": "Showing common mistakes and their fixes",
"examples_per_error_type": 3
},
{
"name": "tool_exploration",
"description": "Guided discovery of tool capabilities",
"exploration_tasks_per_tool": 2
}
],
"evaluation": {
"metrics": [
"selection_accuracy", # Using the right tool
"parameter_correctness", # Formatting parameters properly
"result_utilization", # Using the results effectively
"efficiency" # Minimizing unnecessary tool calls
],
"test_scenarios": 100, # Number of evaluation scenarios
"human_verification": True # Human review of complex tool use
}
}

Continuous Improvement System

We track tool usage patterns and failures to continuously improve our agents:

# Tool usage monitoring system
class ToolUsageMonitor:
def __init__(self):
self.usage_stats = {}
self.failure_patterns = {}
self.improvement_suggestions = []
def record_tool_call(self, agent_id, tool_call, result, success):
# Record basic usage statistics
tool_name = tool_call["name"]
if tool_name not in self.usage_stats:
self.usage_stats[tool_name] = {
"calls": 0,
"successes": 0,
"failures": 0,
"params": {}
}
self.usage_stats[tool_name]["calls"] += 1
if success:
self.usage_stats[tool_name]["successes"] += 1
else:
self.usage_stats[tool_name]["failures"] += 1
self.record_failure_pattern(tool_name, tool_call, result)
def record_failure_pattern(self, tool_name, tool_call, result):
# Analyze and categorize failure patterns
failure_type = categorize_failure(tool_call, result)
if failure_type not in self.failure_patterns:
self.failure_patterns[failure_type] = {
"count": 0,
"examples": []
}
self.failure_patterns[failure_type]["count"] += 1
if len(self.failure_patterns[failure_type]["examples"]) < 5:
self.failure_patterns[failure_type]["examples"].append({
"tool_call": tool_call,
"result": result
})
# Generate improvement suggestions
if self.failure_patterns[failure_type]["count"] >= 10:
suggestion = generate_improvement_suggestion(failure_type,
self.failure_patterns[failure_type]["examples"])
self.improvement_suggestions.append(suggestion)
def get_insights(self):
return {
"usage_stats": self.usage_stats,
"common_failures": sorted(
self.failure_patterns.items(),
key=lambda x: x[1]["count"],
reverse=True
),
"improvement_suggestions": self.improvement_suggestions
}

Future Directions

We continue to explore:

  • More sophisticated parameter repair capabilities
  • Natural language interfaces for tool parameter specification
  • Tool composition for complex tasks
  • Multi-modal tool interactions (text, vision, etc.)
  • Adaptive tool interfaces based on agent capabilities